Inference of regulatory gene interactions from expression data using three-way mutual information.
نویسندگان
چکیده
This paper describes the technique designated best performer in the 2nd conference on Dialogue for Reverse Engineering Assessments and Methods (DREAM2) Challenge 5 (unsigned genome-scale network prediction from blinded microarray data). Existing algorithms use the pairwise correlations of the expression levels of genes, which provide valuable but insufficient information for the inference of regulatory interactions. Here we present a computational approach based on the recently developed context likelihood of related (CLR) algorithm, extracting additional complementary information using the information theoretic measure of synergy and assigning a score to each ordered pair of genes measuring the degree of confidence that the first gene regulates the second. When tested on a set of publicly available Escherichia coli gene-expression data with known assumed ground truth, the synergy augmented CLR (SA-CLR) algorithm had significantly improved prediction performance when compared to CLR. There is also enhanced potential for biological discovery as a result of the identification of the most likely synergistic partner genes involved in the interactions.
منابع مشابه
Gene Regulatory Network Reconstruction Using Conditional Mutual Information
The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation us...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملConstruction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data1[OPEN]
With the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene func...
متن کاملInfluence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
The inference of gene regulatory networks from gene expression data is a difficult problem because the performance of the inference algorithms depends on a multitude of different factors. In this paper we study two of these. First, we investigate the influence of discrete mutual information (MI) estimators on the global and local network inference performance of the C3NET algorithm. More precis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1158 شماره
صفحات -
تاریخ انتشار 2009